Difference between revisions of "Eutrophication"

From Coastal Wiki
Jump to: navigation, search
 
(165 intermediate revisions by 7 users not shown)
Line 1: Line 1:
Eutrophication is an important process involving enrichment of water by excess nutrients.  The different processes and effects of coastal eutrophication are well documented (Cloern, 2001<ref>Cloern, J. (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser., 210, 223–253.[ISI]</ref> ; Conley et al., 2002<ref>Conley, D. J., Markager, S., Andersen, J. et al. (2002) Coastal eutrophication and the Danish National Aquatic Monitoring and Assessment Program. Estuaries, 25, 706–719.[Medline]</ref> ; Rönnberg and Bonsdorff, 2004<ref>Rönnberg, C. and Bonsdorff, E. (2004) Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia, 514, 227–241.[CrossRef][ISI]</ref>). and it has been considered as one of the biggest threats to marinne ecosystem health for decades (Ryther and Dunstan, 1971<ref>Ryther and Dunstan, 1971</ref> ; Nixon, 1995<ref>Nixon, S. W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.[ISI]</ref>; Elmgren, 2001<ref>NEED REF</ref> ; Bachmann et al., 2006<ref>Bachmann, R. W., Cloern, J. E., Heckey, R. E. et al. (eds) (2006) Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51 (1, part 2), 351–800.</ref>.
+
{{Definition
 +
|title=
 +
Eutrophication
 +
|definition= (1) An increase in the supply of organic matter.<ref name="NIXON">Nixon, S. W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. ''Ophelia'', 41, 199–219.[ISI]</ref> <br>
 +
(2) A condition in an aquatic ecosystem where high nutrient concentrations stimulate growth of [[algae]] which leads to imbalanced functioning of the system.<ref> HELCOM webpage, 2006 [http://www.helcom.fi/environment2/eutrophication/en_GB/front/]</ref><br>
 +
(3) The enrichment of water by [[nutrient]]s, especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an adverse deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions.<ref name="And">Andersen, J. H., Schlüter, L. and Ærtebjerg, G. (2006) Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. ''J. Plankton Res''. 28(7): 621-628.</ref>
 +
}}
  
 +
__NOTOC__
 +
==Notes==
 +
High [[primary production]] boosted by eutrophication usually leads to oxygen depletion caused by decay of organic matter.
  
  
 +
==Articles on eutrophication==
  
 +
===Eutrophication processes===
 +
* [[Eutrophication in coastal environments]]
 +
* [[What causes eutrophication?]]
 +
* [[Nutrient conversion in the marine environment]]
 +
* [[Which resource limits coastal phytoplankton growth/ abundance: underwater light or nutrients?]]
 +
* [[Marine microorganisms]]
 +
* [[Marine Plankton]]
  
 +
===Eutrophication impacts===
 +
* [[Threats to the coastal zone]]
 +
* [[Coastal pollution and impacts]]
 +
* [[Possible consequences of eutrophication]]
 +
* [[Algal bloom]]
 +
* [[Algal bloom dynamics]]
 +
* [[Case studies eutrophication]]
  
 +
===Eutrophication monitoring===
 +
* [[In situ monitoring of eutrophication]]
 +
* [[Plankton remote sensing]]
 +
* [[Plankton remote sensing North Sea]]
 +
* [[Real-time algae monitoring]]
 +
* [[Optical measurements in coastal waters]]
 +
* [[Nutrient analysers]]
 +
* [[Differentiation of major algal groups by optical absorption signatures]]
 +
* [[Sampling tools for the marine environment]]
 +
* [[FerryBox - Continuous and automatic water quality observations along transects]]
 +
* [[Detecting the unknown - novelty detection of exceptional water reflectance spectra]]
 +
* [[The Baltic Algae Watch System - a remote sensing application for monitoring cyanobacterial blooms in the Baltic Sea]]
  
 +
===Eutrophication modelling===
 +
* [[Coupled hydrodynamic - water quality - ecological modelling]]
 +
* [[Nutrient loading of coastal waters]]
  
 +
===Eutrophication policy===
 +
* [[OSPAR and eutrophication]]
 +
* [[OSPAR eutrophication assessment]]
 +
* [[European policy on eutrophication: introduction]]
 +
* [[European Context of Nutrient Dynamics]]
 +
* [[Eutrophication related monitoring tasks and WFD for coastal waters in Greece]]
  
  
  
 +
==References==
 +
<references/>
  
 
+
[[Category:Eutrophication]]
==What is eutrophication about?==
 
# It’s about increased productivity (conversion of light and carbon dioxide into living organic matter – a process being limited by nitrogen and/or phosphorus)
 
and unacceptable ecological effects as algal blooms, oxygen depletion, kills of benthic animals and fish
 
# It’s caused by increased inputs of nutrients from
 
##point sources
 
##activities in the upstream catchment (e.g. losses from agriculture)
 
##atmospheric deposition
 
# It’s about money!
 
 
 
 
 
But is “eutrophication” good?
 
*In general: NO … it is actually ”bad” …
 
*... too many nutrients in wrong places may cause problems and result in changes
 
in structure, function and stability of the marine ecosystems …
 
 
 
*Eutrophication is ”too much of a good thing”
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==What are we really talking about?==
 
;Eutrophication : “eu” = “well” or “good”
 
:“trope” = “nourishment”
 
 
 
 
 
 
 
 
 
==Some definitions:==
 
;Eutrophication : An increase in the supply of organic matter
 
: A condition in an aquatic ecosystem where high nutrient concentrations  stimulate growth of algae which leads to imbalanced functioning of the system
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
See [[#alternative proposal|alternatives]] later in this article.
 
 
 
 
 
==What is eutrophication?==
 
===Traditional proposals===
 
Text, text, text.
 
 
 
===Alternative proposal===
 
"The enrichment of water by [[nutrients]], especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an unacceptable deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==Topic==
 
 
 
Marine ecosystems are vulnerable to the effects of eutrophication.
 
[[image:seagrass.png|thumb|seagrass]]
 
 
 
 
 
==The process of eutrophication==
 
 
 
[[image:EutrophicationSchematic.png|Eutrophication schematic. Source: US EPA]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Eutrophication schematic. Source: US EPA
 
 
 
==European Coastal Areas==
 
The main source of nitrogen to European coastal waters is agricultural runoff discharged into the sea via rivers, identified as originating from sources of ammonia evaporation in animal husbandry and partly from fossil fuel combustion in traffic, industry and households (EEA Topic report 7/2001<ref>Ærtebjerg, G. et al., Eutrophication in Europe’s Coastal Waters. Topic Report No 7/2001. European Environment Agency.  (http://reports.eea.europa.eu/topic_report_2001_7/en)</ref>). For phosphorus the major sources are treated and untreated discharges to the sea from households and industry as well as soil erosion (EEA Topic report 7/2001<ref>Ærtebjerg, G. et al., Eutrophication in Europe’s Coastal Waters. Topic Report No 7/2001. European Environment Agency.  (http://reports.eea.europa.eu/topic_report_2001_7/en)</ref>).
 
 
 
 
 
==EU Directives:==
 
*EC Urban Waster Water Treatment Directive http://ec.europa.eu/environment/water/water-urbanwaste/directiv.html
 
*EC Nitrates Directive http://ec.europa.eu/environment/water/water-nitrates/directiv.html
 
*EU Water Framework Directive http://ec.europa.eu/environment/water/water-framework/index_en.html
 
*Marine Strategy Directive http://ec.europa.eu/environment/water/marine.html
 
 
 
==See also==
 
* http://en.wikipedia.org/wiki/Eutrophication
 
 
 
==External links==
 
*[http://www.coastweb.info/ Coastweb]
 
 
 
*National environment research institute (DK)[http://www.dmu.dk/International/News/Source+apportionment.htm  DMU]
 
 
 
*BERNET: Baltic Eutrophication Regional Network [http://www.bernet.org/wm125051]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*(Source appointments of nitrogen and phosphorus inputs into the aquatic environment: article not referenced (and not allowed to reproduce)
 
http://reports.eea.europa.eu/eea_report_2005_7/en/EEA_report_7_2005.pdf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==References==
 
<references/>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Authorship
 
''02/01/2007, Karen Edelvang (kae@dhigroup.com) Caitlin Pilkington (caitlin.pilkington@gmail.com), DHI Water Environment Health.''
 

Latest revision as of 15:15, 14 February 2024

Definition of Eutrophication:
(1) An increase in the supply of organic matter.[1]

(2) A condition in an aquatic ecosystem where high nutrient concentrations stimulate growth of algae which leads to imbalanced functioning of the system.[2]

(3) The enrichment of water by nutrients, especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an adverse deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions.[3]
This is the common definition for Eutrophication, other definitions can be discussed in the article


Notes

High primary production boosted by eutrophication usually leads to oxygen depletion caused by decay of organic matter.


Articles on eutrophication

Eutrophication processes

Eutrophication impacts

Eutrophication monitoring

Eutrophication modelling

Eutrophication policy


References

  1. Nixon, S. W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.[ISI]
  2. HELCOM webpage, 2006 [1]
  3. Andersen, J. H., Schlüter, L. and Ærtebjerg, G. (2006) Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J. Plankton Res. 28(7): 621-628.