Difference between revisions of "Disturbances, biodiversity changes and ecosystem stability"

From Coastal Wiki
Jump to: navigation, search
(Combined impacts)
(Combined impacts)
Line 8: Line 8:
 
==Combined impacts==
 
==Combined impacts==
  
[[Climate change]] scenarios predict an increase in physical stress (e.g. by storms) and organic matter. Local activities cause the loss of some of the [[Keystone_species|key species]] in the [[ecosystems]] such as large seaweeds, [[seagrasses]] and burrowing worms. It is not yet known how these different impacts might combine to affect ecosystem processes.
+
[[Climate change]] scenarios predict an increase in physical stress (e.g. by storms) and organic matter. Local activities cause the loss of some of the [[Keystone_species|key species]] in the [[ecosystems]] such as large seaweeds, [[seagrasses]] and burrowing worms. It is not yet known how these different impacts might combine to affect ecosystem processes.
 
 
This information is essential for the implementation of environmental legislation such as the new [[Marine_Strategy_Directive|EU Marine Framework Strategy Directive]]. Such
 
legislation also requires that specific
 
management strategies are developed for
 
different regions in Europe.
 

Revision as of 12:53, 1 September 2009

Increased river outflow

Climate models predict increasing variance in rainfall, with increased frequency of droughts paralleled by unusual amounts of rainfall and floods. In anticipation of this, the Mediterranean region is now being subjected to extensive river damming, which can have far reaching impacts on coastal food webs. For instance, the diets of the five most abundant flat fish species of the Gulf of Lions and their prey depend on river inputs. The common sole largely profits from the contributions from terrestrial organic matter, via their main prey: deposit-feeding polychaete worms. Therefore inland climate changes may affect coastal marine food webs, through variation in river flow.


Combined impacts

Climate change scenarios predict an increase in physical stress (e.g. by storms) and organic matter. Local activities cause the loss of some of the key species in the ecosystems such as large seaweeds, seagrasses and burrowing worms. It is not yet known how these different impacts might combine to affect ecosystem processes.