Difference between revisions of "In situ measurement of wet bulk density"

From Coastal Wiki
Jump to: navigation, search
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''9. IN-SITU MEASUREMENT OF WET BULK DENSITY'''
+
This article is a summary of chapter 9 of the [[Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas]]<ref>Rijn, L. C. van (1986). ''Manual sediment transport measurements''. Delft, The Netherlands: Delft Hydraulics Laboratory</ref>. This  article describes how the the mass of the water-sediment mixture per unit volume (wet bulk density) can be measured [[in situ]] by mechanical, acoustic or nuclear radiation [[sensor|sensors]].
 
 
 
 
'''9.1 General aspects'''
 
  
 +
==Introduction==
 +
[[image:chapter9_1A.jpg|thumb|300px|Figure 1: In-situ nuclear bulk density profile through stationary suspension showing layered structure and comparison with 30kHz echo-sounder.]]
 
In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.
 
In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.
  
The position of the surface of consolidated mudlayers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments, see Fig. 1A. Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.
+
The position of the surface of consolidated mud layers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments (see Figure 1). Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.
  
Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe.
+
Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe. Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).
Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).
 
  
 +
==Sampling methods==
  
'''9.2 Mechanical core sampler'''
+
===Mechanical core sampler===
 +
A basic requirement is undisturbed sampling of bed material. Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.
  
A basic requirement is undisturbed sampling of bed material.
+
After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the [[core]]. The [[core]] content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the [[core]] to isolate the sample.
  
Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.
+
As the [[core]] diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.
  
After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the core. The core content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the core to isolate the sample.
+
===Acoustic sensor===
 +
The principle of acoustic [[sensor|senors]] is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer. See also [[General principles of optical and acoustical instruments]].
  
As the core diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.
+
===Nuclear radiation sensor===
 
+
The principle of a Nuclear radiation [[sensor]] is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.
 
 
'''9.3 Acoustic sensor'''
 
 
 
The principle is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer.
 
  
 +
==See also==
 +
===Summaries of the manual===
 +
* [[Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas]]
 +
* Chapter 1: [[Introduction, problems and approaches in sediment transport measurements]]
 +
* Chapter 2:  [[Definitions, processes and models in morphology]]
 +
* Chapter 3: [[Principles, statistics and errors of measuring sediment transport]]
 +
* Chapter 4: [[Computation of sediment transport and presentation of results]]
 +
* Chapter 5: [[Measuring instruments for sediment transport]]
 +
* Chapter 6: [[Measuring instruments for particle size and fall velocity]]
 +
* Chapter 7: [[Measuring instruments for bed material sampling]]
 +
* Chapter 8: [[Laboratory and in situ analysis of samples]]
 +
* Chapter 10: [[Instruments for bed level detection]]
 +
* Chapter 11: [[Argus video]]
 +
* Chapter 12: [[Measuring instruments for fluid velocity, pressure and wave height]]
  
'''9.4 Nuclear radiation sensor'''
+
===Other internal links===
 +
* [[Instruments and sensors to measure environmental parameters]]
 +
* [[Acoustic point sensors (ASTM, UHCM, ADV)]]
 +
* [[Acoustic backscatter profiling sensors (ABS)]]
 +
* [[pump samplers]]
 +
* [[Bottle and trap samplers]]
  
The principle is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.
 
  
  
 
==References==
 
==References==
 
<references/>
 
<references/>
 
 
==See also==
 
 
===Other contributions of Leo van Rijn===
 
*[[Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas]]
 
 
*[[INTRODUCTION, PROBLEMS AND APPROACHES IN SEDIMENT TRANSPORT MEASUREMENTS]]
 
*[[DEFINITIONS, PROCESSES AND MODELS IN MORPHOLOGY]]
 
*[[PRINCIPLES, STATISTICS AND ERRORS OF MEASURING SEDIMENT TRANSPORT]]
 
*[[COMPUTATION OF SEDIMENT TRANSPORT AND PRESENTATION OF RESULTS]]
 
*[[MEASURING INSTRUMENTS FOR SEDIMENT TRANSPORT]]
 
*[[MEASURING INSTRUMENTS FOR PARTICLE SIZE AND FALL VELOCITY]]
 
*[[MEASURING INSTRUMENTS FOR BED MATERIAL SAMPLING]]
 
*[[LABORATORY AND IN-SITU ANALYSIS OF SAMPLES]]
 
*[[IN-SITU MEASUREMENT OF WET BULK DENSITY]]
 
*[[INSTRUMENTS FOR BED LEVEL DETECTION]]
 
*[[ARGUS VIDEO]]
 
*[[MEASURING  INSTRUMENTS FOR FLUID VELOCITY, PRESSURE AND WAVE HEIGHT]]
 
 
==External links==
 
 
==Crediting the authors==
 
 
  
 
{{author  
 
{{author  
 
|AuthorID=13226  
 
|AuthorID=13226  
|AuthorName= Rijn, Leo van}}
+
|AuthorFullName= Rijn, Leo van
 
+
|AuthorName=Leovanrijn}}
  
 
{{author  
 
{{author  
 
|AuthorID=12969  
 
|AuthorID=12969  
|AuthorName= Roberti, Hans}}
+
|AuthorFullName= Roberti, Hans
 +
|AuthorName=Robertihans}}
 +
 
 +
[[Category:Coastal and marine observation and monitoring]]
 +
[[Category:Observation of physical parameters]]

Latest revision as of 13:46, 19 August 2020

This article is a summary of chapter 9 of the Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas[1]. This article describes how the the mass of the water-sediment mixture per unit volume (wet bulk density) can be measured in situ by mechanical, acoustic or nuclear radiation sensors.

Introduction

Figure 1: In-situ nuclear bulk density profile through stationary suspension showing layered structure and comparison with 30kHz echo-sounder.

In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.

The position of the surface of consolidated mud layers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments (see Figure 1). Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.

Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe. Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).

Sampling methods

Mechanical core sampler

A basic requirement is undisturbed sampling of bed material. Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.

After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the core. The core content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the core to isolate the sample.

As the core diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.

Acoustic sensor

The principle of acoustic senors is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer. See also General principles of optical and acoustical instruments.

Nuclear radiation sensor

The principle of a Nuclear radiation sensor is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.

See also

Summaries of the manual

Other internal links


References

  1. Rijn, L. C. van (1986). Manual sediment transport measurements. Delft, The Netherlands: Delft Hydraulics Laboratory
The main author of this article is Rijn, Leo van
Please note that others may also have edited the contents of this article.

Citation: Rijn, Leo van (2020): In situ measurement of wet bulk density. Available from http://www.coastalwiki.org/wiki/In_situ_measurement_of_wet_bulk_density [accessed on 28-03-2024]


The main author of this article is Roberti, Hans
Please note that others may also have edited the contents of this article.

Citation: Roberti, Hans (2020): In situ measurement of wet bulk density. Available from http://www.coastalwiki.org/wiki/In_situ_measurement_of_wet_bulk_density [accessed on 28-03-2024]