Difference between revisions of "Sampling tools for the marine environment"

From Coastal Wiki
Jump to: navigation, search
Line 27: Line 27:
 
==Plankton nets==
 
==Plankton nets==
  
[11]Plankton nets are a modification on the standard trawl used to collect planktonic organisms, of nearly any size, intact. Towed by a research vessel, plankton nets have a long funnel shape that allows them to catch differently sized plankton simply by changing the mesh size of the net. At the end of the funnel is a collection cylinder called a cod-end.
+
<ref>http://www.coml.org/edu/tech/collect/planktonnets.htm</ref>Plankton nets are a modification on the standard trawl used to collect planktonic organisms, of nearly any size, intact. Towed by a research vessel, plankton nets have a long funnel shape that allows them to catch differently sized plankton simply by changing the mesh size of the net. At the end of the funnel is a collection cylinder called a cod-end.
  
 
===Ring net===
 
===Ring net===
[[Image:ringnet.jpg|left|ring net<ref name="maine">http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>|frame]]
+
[[Image:ringnet.jpg|right|ring net<ref name="maine">http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>|frame]]
The ring net consists of a fine-meshed bag attached at its mouth, or opening, to a metallic ring. The net itself is terminated in a bottle or jar where the unfiltered plankton and other particulate matter are collected.
+
<ref name="maine" >http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>The ring net consists of a fine-meshed bag attached at its mouth, or opening, to a metallic ring. The net itself is terminated in a bottle or jar where the unfiltered plankton and other particulate matter are collected.
  
 
The net is usually deployed vertically for non-quantitative purposes from a platform, such as a vessel or pier. It may also be towed, although lacking in devices for controlling its passage through the water column, which is otherwise determined by hydrodynamic forces generated naturally during towing or hauling. Towing applications are mainly non-quantitative.
 
The net is usually deployed vertically for non-quantitative purposes from a platform, such as a vessel or pier. It may also be towed, although lacking in devices for controlling its passage through the water column, which is otherwise determined by hydrodynamic forces generated naturally during towing or hauling. Towing applications are mainly non-quantitative.
Line 38: Line 38:
  
  
 +
 +
 +
 +
===Bongo nets===
 +
[[Image:bongo.jpg|right|bongo nets<ref>http://oceanexplorer.noaa.gov/technology/vessels/mcarthur/mcarthur.html</ref>|frame]]<ref name="maine" >http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>Floating or suspended fish eggs and newly hatched larvae are often caught with Bongo nets. The mesh size is very fine, ranging from 20 µm up to 1000 µm (1 mm), thus allowing eggs and larvae with sizes of order 1-20 mm to be caught. The nets, mounted on a rigid yoke, can be towed from the surface to near the bottom for sampling throughout the water column.
 +
 +
In order to obtain quantitative samples of phytoplankton, zooplankton, other invertebrates, and large fish, it is critical to estimate the volume of water that is filtered during the sample. Most bongo and ring nets are deployed with mechanical or electronic flow meters positioned in the mouth of the net to quantify the volume of water filtered.
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
===Multiple Opening/Closing Nets and Environmental Sampling System (MOCNESS)===
 +
[[Image:Mocness.jpg|right|MOCNESS<ref name="maine" >http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>|frame]]
 +
<ref name="maine" >http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>The Multiple Opening/Closing Nets and Environmental Sampling System, which is generally known by its acronym MOCNESS, is an operational, widely used system for capturing plankton at specific depths on the command of the operator. It also routinely carries a number of sensors for measuring environmental parameters as it is towed. These sensors measure, for example, conductivity, temperature, pressure, fluorescence, optical transmission, dissolved oxygen, and light levels.
  
  
Line 46: Line 67:
  
  
===Bongo nets===
 
[[Image:bongo.jpg|right|bongo nets<ref>http://oceanexplorer.noaa.gov/technology/vessels/mcarthur/mcarthur.html</ref>|frame]]
 
  
Floating or suspended fish eggs and newly hatched larvae are often caught with Bongo nets. The mesh size is very fine, ranging from 20 µm up to 1000 µm (1 mm), thus allowing eggs and larvae with sizes of order 1-20 mm to be caught. The nets, mounted on a rigid yoke, can be towed from the surface to near the bottom for sampling throughout the water column.
 
 
In order to obtain quantitative samples of phytoplankton, zooplankton, other invertebrates, and large fish, it is critical to estimate the volume of water that is filtered during the sample. Most bongo and ring nets are deployed with mechanical or electronic flow meters positioned in the mouth of the net to quantify the volume of water filtered.
 
  
  
  
 +
==Neuston nets==
 +
[[Image:neuston net.jpg|right|neuston net<ref>http://www.dnr.sc.gov/marine/sertc/sampling%20methods.pdf</ref>|frame]]
 +
<ref>http://www.dnr.sc.gov/marine/sertc/sampling%20methods.pdf</ref>These types of nets are towed at the surface to sample neuston. Neuston are those organisms associated with the water surface, where they are supported by surface tension. Scientist can determine the number of organisms per unit volume of water filtered.
  
  
Line 63: Line 82:
  
  
===Multiple Opening/Closing Nets and Environmental Sampling System (MOCNESS)===
 
[[Image:Mocness.jpg|right|MOCNESS<ref name="maine" >http://www.usm.maine.edu/gulfofmaine-census/Docs/Technology/STPC.htm#bottomtraw</ref>|frame]]
 
The Multiple Opening/Closing Nets and Environmental Sampling System, which is generally known by its acronym MOCNESS, is an operational, widely used system for capturing plankton at specific depths on the command of the operator. It also routinely carries a number of sensors for measuring environmental parameters as it is towed. These sensors measure, for example, conductivity, temperature, pressure, fluorescence, optical transmission, dissolved oxygen, and light levels.
 
  
  
Line 72: Line 88:
  
  
 +
==Drift nets==
 +
[[Image:drift net.jpg|right|Whales and dolphins have been caught in drift nets<ref>http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2007/04/18/nnet118.xml</ref>|frame]]
 +
<ref>http://www.fishonline.org/caught_at_sea/methods/</ref> Drift nets are not set or fixed in any way, are in fact ‘mobile’, and they are allowed to drift with the prevailing currents. Drift nets are used on the high seas for the capture of a wide range of fish including tuna, squid and shark, and off north-east England for salmon
 +
An EU-wide ban on all drift nets was introduced from January 2002 but problems still exist. 
  
 +
==Gill nets==
  
 +
<ref>http://www.fishonline.org/caught_at_sea/methods/</ref>Gill nets are walls of netting which may be set at or below the surface, on the seabed, or at any depth in between. Gill netting is probably the oldest form of net fishing, having been in use for thousands of years. True gill nets catch fish that attempt to swim through the net, which are caught if they are of a size large enough to allow the head to pass through the meshes but not the rest of the body. The fish then becomes entangled by the gills as it attempts to back out of the net. The mesh size used depends upon the species and size range being targeted.
  
  
Line 96: Line 118:
  
  
[[Image:neuston net.jpg|right|neuston net<ref>http://www.dnr.sc.gov/marine/sertc/sampling%20methods.pdf</ref>|frame]]
 
[[Image:drift net.jpg|right|drift net<ref>http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2007/04/18/nnet118.xml</ref>|frame]]
 
 
[[Image:gill net.jpg|right|gill net<ref>http://the.honoluluadvertiser.com</ref>|frame]]
 
[[Image:gill net.jpg|right|gill net<ref>http://the.honoluluadvertiser.com</ref>|frame]]
 
[[Image:fyke net.jpg|right|fyke net<ref>http://glei.nrri.umn.edu/default/fykenet.htm</ref>|frame]]
 
[[Image:fyke net.jpg|right|fyke net<ref>http://glei.nrri.umn.edu/default/fykenet.htm</ref>|frame]]
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
  
  

Revision as of 13:26, 6 September 2007

[1]All methods of physical capture are inherently selective. Small fish may pass through large-meshed nets; large fish may out-swim trawls; gill nets will catch fish mainly of a certain size range. Fish may react differently to fishing gear with respect to species, size, biological state, environmental conditions including ambient light and the acoustic noise field, among many other factors.

[2]|This is why organisms are subdivided out of practical necessity, in that the sampling approach and sample size that are appropriate for one group are often inappropriate for another. The disparity in appropriate techniques for different sizes of groups of organisms has contributed greatly to the paucity of studies on more than one taxonomic grouping at a given locale.

Unfortunately, where conflicting conclusions have been drawn patterns in different groups of organisms, it is rarely possible to know whether the patterns truly vary among groups or merely reflect differences in sampling efforts

Sampling tools for pelagic organisms

Midwater or pelagic trawl

[1]A midwater trawl is a set of gear that is used to catch fish that are between the sea surface and bottom, generally staying clear of the bottom. Occasionally, midwater trawls are configured with floats to perform catching in the shallow-surface layer.

[3]A midwater trawl consists of a cone shaped body, normally made of four panels, ending in a codend with lateral wings extending forward from the opening.

[1]Midwater and bottom trawls (see further) have many parts in common, if differing in dimensions and shapes due to their different fishing objects and hydrodynamic regimes of operation. Midwater trawls are designed to catch fish in the midwater column, hence must be capable of rapid maneuvering while maintaining an open net mouth. This is reflected in differences in the body of the net, rigging, and even trawl doors.

pelagic trawl [1]
pelagic trawl [3]






Plankton nets

[4]Plankton nets are a modification on the standard trawl used to collect planktonic organisms, of nearly any size, intact. Towed by a research vessel, plankton nets have a long funnel shape that allows them to catch differently sized plankton simply by changing the mesh size of the net. At the end of the funnel is a collection cylinder called a cod-end.

Ring net

ring net[1]

[1]The ring net consists of a fine-meshed bag attached at its mouth, or opening, to a metallic ring. The net itself is terminated in a bottle or jar where the unfiltered plankton and other particulate matter are collected.

The net is usually deployed vertically for non-quantitative purposes from a platform, such as a vessel or pier. It may also be towed, although lacking in devices for controlling its passage through the water column, which is otherwise determined by hydrodynamic forces generated naturally during towing or hauling. Towing applications are mainly non-quantitative.




Bongo nets

bongo nets[5]
[1]Floating or suspended fish eggs and newly hatched larvae are often caught with Bongo nets. The mesh size is very fine, ranging from 20 µm up to 1000 µm (1 mm), thus allowing eggs and larvae with sizes of order 1-20 mm to be caught. The nets, mounted on a rigid yoke, can be towed from the surface to near the bottom for sampling throughout the water column.

In order to obtain quantitative samples of phytoplankton, zooplankton, other invertebrates, and large fish, it is critical to estimate the volume of water that is filtered during the sample. Most bongo and ring nets are deployed with mechanical or electronic flow meters positioned in the mouth of the net to quantify the volume of water filtered.






Multiple Opening/Closing Nets and Environmental Sampling System (MOCNESS)

MOCNESS[1]

[1]The Multiple Opening/Closing Nets and Environmental Sampling System, which is generally known by its acronym MOCNESS, is an operational, widely used system for capturing plankton at specific depths on the command of the operator. It also routinely carries a number of sensors for measuring environmental parameters as it is towed. These sensors measure, for example, conductivity, temperature, pressure, fluorescence, optical transmission, dissolved oxygen, and light levels.







Neuston nets

neuston net[6]

[7]These types of nets are towed at the surface to sample neuston. Neuston are those organisms associated with the water surface, where they are supported by surface tension. Scientist can determine the number of organisms per unit volume of water filtered.








Drift nets

Whales and dolphins have been caught in drift nets[8]

[9] Drift nets are not set or fixed in any way, are in fact ‘mobile’, and they are allowed to drift with the prevailing currents. Drift nets are used on the high seas for the capture of a wide range of fish including tuna, squid and shark, and off north-east England for salmon An EU-wide ban on all drift nets was introduced from January 2002 but problems still exist.

Gill nets

[10]Gill nets are walls of netting which may be set at or below the surface, on the seabed, or at any depth in between. Gill netting is probably the oldest form of net fishing, having been in use for thousands of years. True gill nets catch fish that attempt to swim through the net, which are caught if they are of a size large enough to allow the head to pass through the meshes but not the rest of the body. The fish then becomes entangled by the gills as it attempts to back out of the net. The mesh size used depends upon the species and size range being targeted.












gill net[11]
fyke net[12]












References