Difference between revisions of "Pollution and scavengers"

From Coastal Wiki
Jump to: navigation, search
Line 6: Line 6:
 
This causes decomposers, like crabs, to have a higher pollutant contents than other [[pollution and zoobenthos|zoobenthos]].   
 
This causes decomposers, like crabs, to have a higher pollutant contents than other [[pollution and zoobenthos|zoobenthos]].   
  
Crabs, especially larvae, appear to be vulnerable to pesticides <ref>Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.</ref> So did the crab fishery of Chesapeake Bay in the 1960s collapse due to a pesticide called keptone.  
+
Crabs, especially larvae, appear to be vulnerable to pesticides <ref>Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.</ref> This vulnerability caused the crab fishery of Chesapeake Bay in the 1960s collapse due to a pesticide called keptone.  
  
 
Below you can find some links to Belgian case studies on ecotoxicology in marine scavengers.
 
Below you can find some links to Belgian case studies on ecotoxicology in marine scavengers.

Revision as of 16:46, 22 July 2009

Homarus gammarus © Vincent Zintzen

Decomposers feed on decaying organic matter, which can ofter contain high concentrations of pollutants. [1] This causes decomposers, like crabs, to have a higher pollutant contents than other zoobenthos.

Crabs, especially larvae, appear to be vulnerable to pesticides [2] This vulnerability caused the crab fishery of Chesapeake Bay in the 1960s collapse due to a pesticide called keptone.

Below you can find some links to Belgian case studies on ecotoxicology in marine scavengers.

Case studies

Case study 1: Flame retardants organotin compounds and surfactants in opossum shrimps of the Scheldt estuary.[3]

Case study 2: Effects of endocrine disrupting compounds on embryonic development of opossum shrimps.G[4]

References

  1. Voorspoels, S.; Covaci, A.; Maervoet, J.; De Meester, I.; Schepens, P. (2004). Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 49(5-6): 393-404
  2. Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.
  3. Verslycke, T.; Vethaak, A.D.; Arijs, K.; Janssen, C.R. (2004). Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ. Poll. 136(1): 19-31
  4. hekiere, A.; Fockedey, N.; Verslycke, T.; Vincx, M.; Janssen, C.R. (2007). Marsupial development in the mysid Neomysis integer (Crustacea: Mysidacea) to evaluate the effects of endocrine-disrupting chemicals. Ecotoxicol. Environ. Saf. 66(1): 9-15